
XGBoost Evaluation

Beixuan Yang

December 22,2021

Abstract
XGBoost is a highly effective and widely used tree boosting ma-

chine learning method. This course project intends to evaluate the
XGBoost algorithm on both classification and regression tasks.

1 Introduction

XGBoost is a very popular machine learning algorithm. It builds multiple
trees as weak learners and combine them as a strong learner. Unlike random
forest that looks at the average/votes of each tree, instead, it takes the sum
of all the trees’ output to compute the final result. In order to form this
”additive” method, the trees are targeting to predict the residual of the pre-
vious output(i.e. the ground truth subtract the sum of the previous trees).
Ideally, the absolute value of the target (the residual) will gradually decrease
and finally converge to 0 or some predefined threshold as the number of trees
grows. In this project. XGBoost algorithm is tested on four datasets, the
”US-Accident-Oct2021” & the ”fashion mnist” for classification; the ”syn-
chronous machine” & the ”Beijing PM2.5” for regression. The authors of [1]
introduced a high scalable XGBoost system which can deal with billions of
examples using fewer resources than many systems. Due to the limitation of
time and hardware, this project will focus on the performance of the basic
algorithm only.

2 Related work

As a favored method, XGBoost has been widely evaluated and compared
with other machine learning algorithms. For instance it is often compared

1

with Random Forest. In [2], the author compared XGBoost and Random
Forest in details. Neutral Network is famous for it’s capacity of handling
huge amount of data, so the authors of [1] proposed a scalable system which
makes XGBoost become competitive in this era that available data size soars
fast.

3 Approach & Experimental results

The main objective of this project is to test XGBoost with 4 datasets, of
which two for classification and two for regression. XGBoost is compared
with algorithms (kNN, Neural Network, Linear Regression, Decision Tree,
Random Forest and AdaBoost) with regards to accuracy, R2 score, running
time (training time plus testing time) as well as the performance on unbal-
anced dataset.

3.1 Classification

3.1.1 4 class classification on US-Accident dataset

This is a countrywide car accident dataset collected from February 2016 to
December 2020. There are about 1.5 million accident records covers 49 states
in the US [3]. Only the data from California are used for evaluation in this
project. The task is to predict the severity level of the accidents. The data is
unbalanced, among the 4 levels, the most interested level (level 4) occupies
only 1.8% of the dataset. Therefore, the samples are selected in purpose
such that the percentage of level 4 increased to 15%.Three different settings
of preprocessing are performed on this dataset in order to test how will the
performance of algorithms impacted when data forms are changed.

3.1.2 US-Accident setting 1

Data size: 42210 samples with 109 attributes(unscaled). It is tested with
kNN, XGBoost and Random Forest. The results are shown in table 1.

3.1.3 US-Accident setting 2

Data size: 42210 samples with 15 selected attributes (unscaled). The at-
tributes are ranked by Random Forest It is tested with kNN, XGBoost and

2

Table 1: Results of US-Accident setting1

XGBoost kNN Random Forest
Overall Accuracy 0.798 0.676 0.808
Accuracy of level 4 0.455 0.224 0.486
Running time 29s 6.9s 9s

Random Forest. Results are shown in table 2.

Table 2: Results of US-Accident setting2

XGBoost kNN Random Forest
Overall Accuracy 0.812 0.678 0.817
Accuracy of level 4 0.532 0.194 0.512
Running time 16s 0.7s 26s

3.1.4 US-Accident setting 3

Data size: 42210 samples with 15 selected attributes(scaled to (0,1)). It is
tested with kNN, XGBoost and Neural Network. Results are shown in table
3.

Table 3: Results of US-Accident setting3

XGBoost kNN Neural Network
Overall Accuracy 0.663 0.676 0.677
Accuracy of level 4 0.422 0.242 0
Running time 17s 0.9s 88.9s

3.1.5 Summary of the 3 US-Accident settings

The overall accuracy of XGBoost is good but not best in all three settings. In
two of them, XGBoost accived the best performance on predicting the most
interested class even though the dataset is unbalanced and there are only
15% samples belongs to the interested class. In setting 3, Neural Network
has higher overall accurcy than XGBoost. However, it doesn’t classify any
data into the interested class, whereas XGBoost achieved 42.2% accuracy in
classifiy the interested class.

3

3.1.6 10 class classification on Fashion Mnist

This test is aimed to test running accuracy between XGBoost and Neural
Network (20% data from the full dataset are randomly selected to use in
this task). I used the code frame of my previous assignment because the
hyperparamter of Neural Network was tuned previously. The results are
listed in table 4. To reach 85% of accuracy, XBGoost is slightly slower, while
to achieve 87%, XGBoost is much faster than Neural Network.I could not
get higher accuracy for both the methods.

Table 4: Results of XGBoost vs Neural Network Fashion Mnist

Running time of XGBoost Running time of Neural Network
Accuracy 0.85 52s 26s
Accuracy 0.87 179s 391s

3.2 Regression

3.2.1 Excitation current regression of synchronous machine

synchronous machine [4] is a small dataset consisted of 557 samples and
5 attributes. 5-fold cross-validation are applied to compare 7 algorithms.
This dataset is selected because it is recently released. However, there is no
significant difference in terms of R2 score and mean squared error between
this 7 methods. As we can see in table 5, all the methods got high score.
The average performance of XGBoost is in the 3rd place.

Table 5: R2 score comparison on synchronous machine dataset

XGBoost AdaBoost NN kNN LinearR RandomF DecisionT
1 0.99981 0.99780 0.99832 0.99179 1.0 1.0 0.99982
2 0.99977 0.99777 0.99715 0.98788 1.0 1.0 0.99979
3 0.99996 0.99768 0.99481 0.99017 1.0 1.0 0.99989
4 0.99995 0.99764 0.99765 0.99223 1.0 1.0 0.99980
5 0.99993 0.99727 0.99707 0.99183 1.0 1.0 0.99988

4

3.2.2 PM2.5 regression of Beijing PM2.5 dataset

Beijing PM2.5 dataset [5] is a hourly collected PM2.5 values of Beijing along
with 13 attributes. Since the dataset is large, only the data form station
Wanshouxigong (there are totally 9 data collecting stations) are used as the
training set. This is an unbalanced dataset for the highest PM2.5 value are
around 690 while 50% of the values are under 50. The interested values
are in the higher end. In this project, we keep the original distribution of
PM2.5 values to train the models. These models are tested in both natural
distributed dataset as well as the selected data which contains high PM2.5
values only.

3.2.3 Beijing PM2.5 setting 1

The attributes are not scaled. 5-fold cross-validation is used to compare
the performance of predicting the PM2.5 value. As shown in table 6,7 and
8, XGBoost surpasses the other 6 methods in terms of R2 score and MSE.
With regards to the running time, it is in the slow end but not the worst.

Table 6: R2 score comparison on predicting the PM2.5 setting1

XGBoost AdaBoost NN kNN LinearR RandomF DecisionT
1 0.9603 0.64757 0.90509 0.89265 0.8599 0.94741 0.88864
2 0.96053 0.5615 0.91547 0.90151 0.89016 0.94506 0.89016
3 0.95547 0.54515 0.90681 0.8901 0.84994 0.93992 0.88141
4 0.95942 0.52221 0.91026 0.89048 0.86053 0.9442 0.88587
5 0.95132 0.60226 0.90798 0.8906 0.85238 0.93569 0.87442
ave 0.957354 0.575738 0.909122 0.893068 0.856476 0.9424556 0.8841

Table 7: Running time (s) comparison on predicting the PM2.5 setting1

XGBoost AdaBoost NN kNN LinearR RandomF DecisionT
1 42 3 18 4 0.05 79 0.4
2 16 3 17 4 0.03 63 0.4
3 16 3 11 4 0.03 63 0.4
4 15 3 25 4 0.03 64 0.5
5 18 3 23 5 0.03 70 0.4

5

Table 8: MSE comparison on predicting the PM2.5 setting1

XGBoost AdaBoost NN kNN LinearR RandomF DecisionT
1 17 51 26 28 32 19 28
2 16 56 24 26 31 19 28
3 17 56 25 27 32 20 28
4 17 59 25 28 31 20 28
5 18 53 25 27 32 21 29

3.2.4 Beijing PM2.5 setting 2

The attributes are scaled (normalized) and also, continuous attributes has
their z score added as extra attributes. Again, 5-fold cross-validation is
used to compare the performance of predicting the PM2.5 value. Under this
setting all the algorithm predicts almost perfect, XGBoost ranks 2 in terms
of R2 score (table 9).

Table 9: R2 score comparison on predicting the PM2.5 setting2

XGBoost AdaBoost NN kNN LinearR RandomF DecisionT
1 0.99999 0.98995 0.99927 0.92555 1.0 0.99998 0.99996
2 1.0 0.98952 0.99928 0.92481 1.0 1.0 0.99999
3 1.0 0.98898 0.99833 0.921281 1.0 1.0 0.99999
4 1.0 0.99126 0.99893 0.92290 1.0 0.99999 0.99998
5 1.0 0.98988 0.99906 0.92244 1.0 0.99998 0.9999

3.2.5 Beijing PM2.5 setting 3

The third test is used to test the performance of predicting only the data
with high PM2.5 values with the models trained in setting 1. Over 27000
samples with PM2.5 value greater than 75 (the pollution line) from 2 other
data collecting stations are used in this task. Form table 10, it is clear that
XGBoost achieves the highest R2 score (85%) in this setting which indicates
that it tends to perform well on the small percentage of classes (usually the
interested ones)when the training data are unbalanced.

6

Table 10: R2 score comparison on predicting the PM2.5 setting3

XGBoost AdaBoost NN kNN LinearR RandomF DecisionT
R2 0.852 0.703 0.83 0.764 0.78 0.844 0.707
MSE 32 46 34 41 39 33 45

4 Conclusions

Based on the limited work done in this project, XGBoost is a great algorithm
in terms of accuracy in classification tasks and R2 scores in Regression under
different settings of preprocessed data. Unlike linear Regression, kNN’s etc.,
XGBoost’s performance doesn’t change dramatically with variance settings
of data reprocessing. The down side is that it is relatively slow due to the
structure that a set of weak learners(trees) need to be built. But still, it is
usually faster than Neural Network and Random Forest in this experiment.
Other than the overall accuracy, on both the unbalanced datasets, it performs
better than all the other methods when predicting the data that are interested
but with lower percentage in the full set. This is under the situation that
no cost matrix are applied while building the models. The existing xgb
libs/packages do not take cost matrix. Thus, a potential future work could
be to implement a version of XGBoost that takes cost matrix, this may even
boosting its performance on predicting interested classes/values.

[6] [7] [8] are some reference code that I learned from for this project.

7

References

[1] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
2016. [Online]. Available: https://www.kdd.org/kdd2016/papers/files/
rfp0697-chenAemb.pdf

[2] A. Gupta. (2021) Xgboost versus random forest. [Online]. Avail-
able: https://medium.com/geekculture/xgboost-versus-random-forest-
898e42870f30

[3] S. Moosavi. (2021) Us accidents (updated). [Online]. Available:
https://www.kaggle.com/sobhanmoosavi/us-accidents

[4] R. BAYINDIR and H. T. KAHRAMAN. (2021) Synchronous machine
data set data set. [Online]. Available: https://archive.ics.uci.edu/ml/
datasets/Synchronous+Machine+Data+Set

[5] S. X. Chen. (2017) Beijing pm2.5 data data set. [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data

[6] K. Lemagnen. (2017) Hyperparameter tuning in xgboost. [Online].
Available: https://blog.cambridgespark.com/hyperparameter-tuning-in-
xgboost-4ff9100a3b2f

[7] A. Xiao. (2021). [Online]. Available: https://github.com/Aaron-X-93

[8] A. SINGH. (2021) Synchronous motors best result 97.1% r2 score rf. [On-
line]. Available: https://www.kaggle.com/akarshsinghh/synchronous-
motors-best-result-97-1-r2-score-rf

8

